

Keg: more than Flask

Keg is an opinionated but flexible web framework built on Flask and SQLAlchemy.

Keg’s Goal

The goal for this project is to encapsulate Flask best practices and libraries so devs can avoid
boilerplate and work on the important stuff.

We will lean towards being opinionated on the big things (like SQLAlchemy as our ORM) while
supporting hooks and customizations as much as possible.

Think North of Flask but South of Django.

Installation

pip install keg

Upgrade Notes

While we attempt to preserve backward compatibility, some Keg versions do introduce
breaking changes. This list should provide information on needed app changes.

	0.11.0

	App context is no longer pushed as part of test suite setup

	Having the app context pushed there was problematic because extensions can rely on
flask.g refreshing for each request

	Generally, when processing requests, flask will push a fresh app context. However, this
does not occur if a context is already present.

	While that concern is resolved most directly in flask-webtest 0.1.1 by directly pushing
an app context as part of the request process, keg needs to stop tying the test framework
and the context so closely together. An app’s test suite needs to be able to set up and
tear down contexts as needed.

	pytest does not yet support passing fixtures to setup methods. Thus, for the time being,
to have database use available in setup methods (since flask-sqlalchemy ties that session
to an app context), auto-used fixtures will be needed. Ensure the scope of the auto-used
fixture matches the level of setup methods needed in the suite (module, class, etc.)

	Mocking can be affected in the test suite as well. Any mocks requiring app context will
need to happen at run time, rather than import time

	E.g. @mock.patch.dict(flask.current_app.config, ...) becomes
@mock.patch.dict('flask.current_app.config', ...)

	0.10.0

	rule: default class view route no longer generated when any rules are present

	Absolute route had been provided automatically from the class name, but in some situations
this would not be desired. Views that still need that route can use a couple of solutions:

	Provide an absolute route rule: rule('/my-route')

	Use an empty relative route rule: rule()

	All of an app’s routes may be shown on CLI with the <app> develop routes command

	Removed keg blueprint along with ping and exception-test routes

	DB manager prep_empty method no longer called (had been deprecated)

	Python 2 support removed

	Flask changed app’s json_encoder/json_decoder attributes to _json_encoder/_json_decoder

Contents

	App

	Components
	Documentation

	Utils

	Signals
	Keg Events

	Testing Utils

	Keg Web

	Views
	Blueprint Setup

	Template Discovery

	URL and Endpoint Calculation

	Route Generation

	Class View Lifecycle

	Documentation

	Features
	Default Logging Configuration

	App Configuration
	Configuration Variables

	CLI Command

	Profile Priority

	Selecting a Configuration Profile

	Internationalization

App

	
class keg.app.Keg(import_name=None, *args, **kwargs)

	
	
cli_loader_class

	alias of keg.cli.CLILoader

	
config_class

	alias of keg.config.Config

	
logger

	Standard logger for the app.

	
make_config(instance_relative=False)

	Needed for Flask <= 0.10.x so we can set the configuration class
being used. Once 0.11 comes out, Flask supports setting the config_class on the app.

	
on_config_complete()

	For subclasses to override

	
on_init_complete()

	For subclasses to override

	
request_context(environ)

	Request context for the app.

	
route(rule, **options)

	Enable .route() to be used in a class context as well. E.g.:

KegApp.route('/something'):
def view_something():
 pass

	
classmethod testing_prep(**config)

	
	Instantiate the app class.

	
	Cache the app instance after creation so that it’s only instantiated once per Python

	process.

	
	Trigger signal.testing_run_start the first time this method is called for an app

	class.

Components

Keg components follow the paradigm of flask extensions, and provide some defaults for the
purpose of setting up model/view structure. Using components, a project may be broken down into
logical blocks, each having their own entities, blueprints, templates, tests, etc.

	Components need to be registered in config at KEG_REGISTERED_COMPONENTS

	The path given here should be a full dotted path to the top level of the component

	e.g. my_app.components.blog

	At the top level of the component, __component__ must be defined as an instance of KegComponent

	Depending on the needs of the component, model and view discovery may be driven by the subclasses
of KegComponent that have path defaults

	Examples:

	__component__ = KegModelComponent('blog')

	__component__ = KegViewComponent('blog')

	__component__ = KegModelViewComponent('blog')

	Component discovery

	A component will attempt to load model and blueprints on app init

	The default paths relative to the component may be modified or extended on the component’s definition

	Default model path in “model” components: .model.entities

	Override via the component’s db_visit_modules list of relative import paths

	Default blueprint path for “view” components: .views.component_bp

	Use the create_named_blueprint or create_blueprint helpers on the component’s __component__
to create blueprints with configured template folders

	Override via the component’s load_blueprints list

	List elements are a tuple of the relative import path and the name of the blueprint attribute

	Components have their own template stores, in a templates folder

	Override the component’s template path via the template_folder attribute

	Paths may also be supplied to the constructor

	e.g. __component__ = KegComponent('blog', db_visit_modules=('.somewhere.else',))

Documentation

	
class keg.component.KegComponent(name, app=None, db_visit_modules=None, load_blueprints=None, template_folder=None, parent_path=None)

	Keg components follow the paradigm of flask extensions, and provide some defaults for the
purpose of setting up model/view structure. Using components, a project may be broken down into
logical blocks, each having their own entities, blueprints, templates, tests, etc.

Setup involves:
- KEG_REGISTERED_COMPONENTS config setting: assumed to be an iterable of importable dotted paths
- __component__: at the top level of each dotted path, this attribute should point to an
instance of KegComponent. E.g. __component__ = KegComponent(‘widgets’)

By default, components will load entities from db_visit_modules into metadata and register
any blueprints specified by load_blueprints.

Blueprints can be created with the helper methods create_named_blueprint or create_blueprint
in order to have a configured template folder relative to the blueprint path.

Use KegModelComponent, KegViewComponent, or KegModelViewComponent for some helpful defaults for
model/blueprint discovery.

	db_visit_modules: an iterable of dotted paths (e.g. .mycomponent.entities,

	app.component.extraentities) where Keg can find the entities for this
component to load them into the metadata.

Note

Normally this is not explicitly required but can be useful in cases where imports
won’t reach that file.

Note

This can accept relative dotted paths (starts with .) and it will prepend the
component python package determined by Keg when instantiating the component. You can also
pass absolute dotted paths and no alterations will be performed.

	load_blueprints: an iterable of tuples, each having a dotted path (e.g. .mycomponent.views,

	app.component.extraviews) and the blueprint attribute name to load and
register on the app. E.g. ((‘.views’, ‘component_bp’),)

Note

This can accept relative dotted paths (starts with .) and it will prepend the
component python package determined by Keg when instantiating the component. You can also
pass absolute dotted paths and no alterations will be performed.

template_folder: string to be passed for template config to blueprints created via the component

	
create_blueprint(*args, **kwargs)

	Make a flask blueprint having a template folder configured.

Generally, args and kwargs provided will be passed to the blueprint constructor, with
the following exceptions:

	template_folder kwarg defaults to the component’s template_folder if not provided

	blueprint_cls kwarg may be used to specify an alternative to flask.Blueprint

	
create_named_blueprint(*args, **kwargs)

	

	
db_visit_modules = ()

	

	
init_app(app, parent_path=None)

	

	
init_blueprints(app, parent_path)

	

	
init_config(app)

	

	
init_db(parent_path)

	

	
load_blueprints = ()

	

	
template_folder = 'templates'

	

Utils

	
class keg.utils.ClassProperty(fget, *arg, **kw)

	A decorator that behaves like @property except that operates
on classes rather than instances.

	
class keg.utils.HybridMethod(func, cm_func=None)

	A decorator which allows definition of a Python object method with both
instance-level and class-level behavior:

Class Bar:
 @hybridmethod
 def foo(self, rule, **options):
 # this is used in an instance context

 @foo.classmethod
 def foo(cls, rule, **options):
 # this is used in class context

	
classmethod(cm_func)

	Provide a modifying decorator that is used as a classmethod decorator.

	
keg.utils.app_environ_get(app_import_name, key, default=None)

	

	
keg.utils.ensure_dirs(newdir, mode=<class 'keg.utils.NotGiven'>)

	A “safe” verision of Path.makedir(…, parents=True) that will only create the directory
if it doesn’t already exist. We also manually create parents so that mode is set
correctly. Python docs say that mode is ignored when using Path.mkdir(…, parents=True)

	
keg.utils.pymodule_fpaths_to_objects(fpaths)

	Takes an iterable of file paths reprenting possible python modules and will return an
iterable of tuples with the file path along with the contents of that file if the file
exists.

If the file does not exist or cannot be accessed, the third term of the tuple stores
the exception.

	
keg.utils.visit_modules(dotted_paths, base_path=None)

	

Signals

As Keg is based on Flask architecture, signals are used to set up and execute callback
methods upon certain events.

Attaching a callback to a signal involves the connect decorator:

from keg.signals import init_complete

@init_complete.connect
def init_navigation(app):
 pass

Take care: some signals fire before an app is fully set up and ready. See the definitions
below for when the signals are fired, and what can be counted upon to be available.

Keg Events

	init_complete

	All of the app’s init tasks have run

	App’s on_init_complete method has run

	At this point in the process, it should be safe to assume all app-related objects are present

	config_complete

	App config has been loaded

	Config is the first property of the app to be initialized. app.config will be available,
but do not count on anything else.

	db_before_import

	Database options have been configured, and the app is about to visit modules containing
entities

	Config, logging, and error handling have been loaded, but no other extensions, and
the app’s visit_modules has not yet been processed

	Some SQLAlchemy metadata attributes, such as naming convention, need to be set prior to
entities loading. Attaching a method on this signal is an ideal way to set these properties.

	A common practice with signals is to attach handlers in a separate module, and then list that
module in the app’s visit_modules. This works with many signals, however, the database layer
gets set up very early in app init to make it available in other steps of the init process.

	As a result, db_before_import happens long before visit_modules is processed.

	Instead, use db_before_import somewhere that gets loaded at import time for the app (e.g.
in the module containing the app itself, or something it imports).

	If customization of the db object, metadata, engine options, etc. is needed, ensure that
no modules containing entities are imported before the connected callback runs.

	testing_run_start

	app.testing_prep has set up necessary context and is about to return the test app

	Not run during normal operation

	Provides a hook to inject necessary test objects

	db_clear_pre, db_clear_post, db_init_pre, db_init_post

	Called during the database initialization process, which occurs in test setup and from CLI
commands

Testing Utils

	
class keg.testing.CLIBase

	Test class base for testing Keg click commands.

Creates a CLI runner instance, and allows subclass to call self.invoke with
command args.

Class attributes:
- app_cls: Optional, will default to flask.current_app class.
- cmd_name: Optional, provides default in self.invoke for cmd_name kwarg.

	
invoke(*args, **kwargs)

	Run a command, perform some assertions, and return the result for testing.

	
class keg.testing.ContextManager(appcls)

	Facilitates having a single instance of an application ready for testing.

By default, this is used in Keg.testing_prep.

Constructor arg is the Keg app class to manage for tests.

	
classmethod get_for(appcls)

	Return the ContextManager instance for the given app class. Only one ContextManager
instance will be created in a Python process for any given app.

	
is_ready()

	Indicates the manager’s app instance exists.

The instance should be created with get_for. Only one ContextManager instance will get
created in a Python process for any given app. But, get_for may be called multiple
times. The first call to ensure_current will set up the application and bring the
manager to a ready state.

	
keg.testing.app_config(**kwargs)

	Set config values on any apps instantiated while the context manager is active.
This is intended to be used with cli tests where the current_app in the test will be
different from the current_app when the CLI command is invoked, making it very difficult
to dynamically set app config variables using mock.patch.dict like we normally would.

Example:

class TestCLI(CLIBase):
 app_cls = MyApp
 def test_it(self):
 with testing.app_config(FOO_NAME='Bar'):
 result = self.invoke('echo-foo-name')
 assert 'Bar' in result.output

	
keg.testing.inrequest(*req_args, args_modifier=None, **req_kwargs)

	A decorator/context manager to add the flask request context to a test function.

Allows test to assume a request context without running a full view stack. Use for
unit-testing a view instance without setting up a webtest instance for the app and
running requests.

Flask’s request.args is normally immutable, but in test cases, it can be helpful to
patch in args without needing to construct the URL. But, we don’t want to leave them
mutable, because potential app bugs could be masked in doing so. To modify args, pass
in a callable as args_modifier that takes the args dict to be modified in-place. Args
will only be mutable for executing the modifier, then returned to immutable for the
remainder of the scope.

Assumes that flask.current_app is pointing to the desired app.

Example:

@inrequest('/mypath?foo=bar&baz=boo')
def test_in_request_args(self):
 assert flask.request.args['foo'] == 'bar'

def test_request_args_mutated(self):
 def args_modifier(args_dict):
 args_dict['baz'] = 'custom-value'

 with inrequest('/mypath?foo=bar&baz=boo', args_modifier=args_modifier):
 assert flask.request.args['foo'] == 'bar'
 assert flask.request.args['baz'] == 'custom-value'

	
keg.testing.invoke_command(app_cls, *args, **kwargs)

	Invoke a command using a CLI runner and return the result.

Optional kwargs:
- exit_code: Default 0. Process exit code to assert.
- runner: Default click.testing.CliRunner(). CLI runner instance to use for invocation.
- use_test_profile: Default True. Drive invoked app to use test profile instead of default.

Keg Web

Views

While generic Flask views will certainly work in this framework, Keg provides a BaseView that
applies a certain amount of magic around route and blueprint setup. BaseView is based on Flask’s
MethodView. Best practice is to set up a blueprint and attach the views to it via the blueprint
attribute. Be aware, BaseView will set up some route, endpoint, and template location defaults,
but these can be configured if needed.

Blueprint Setup

Adding views to a blueprint is accomplished via the blueprint attribute on the view. Note,
BaseView magic kicks in when the class is created, so assigning the blueprint later on will not
currently have the desired effect:

import flask
from keg.web import BaseView

blueprint = flask.Blueprint('routing', __name__)

class VerbRouting(BaseView):
 blueprint = blueprint

 def get(self):
 return 'method get'

Once the blueprint is created, you must attach it to the app via the use_blueprints app attribute:

from keg.app import Keg
from my_app.views import blueprint

class MyApp(Keg):
 import_name = 'myapp'
 use_blueprints = (blueprint,)

Blueprints take some parameters for URL prefix and template path. BaseView will respect these when
generating URLs and finding templates:

blueprint = flask.Blueprint(
 'custom',
 __name__,
 template_folder='../templates/specific-path',
 url_prefix='/tanagra')

class BlueprintTest(BaseView):
 # template "blueprint_test.html" will be expected in specific-path
 # endpoint is custom.blueprint-test
 # URL is /tanagra/blueprint-test
 blueprint = blueprint

 def get(self):
 return self.render()

Template Discovery

To avoid requiring the developer to configure all the things, BaseView will attempt to discover the
correct template for a view, based on the view class name. Generally, this is a camel-case to
underscore-notation conversion. Blueprint name is included in the path, unless the blueprint has
its own template_path defined.

	class MyBestView in blueprint named “public” -> <app>/templates/public/my_best_view.html

	class View2 in blueprint named “other” with template path “foo” -> <app>/foo/view2.html

A view may be given a template_name attribute to override the default filename, although the same
path is used for discovery:

class TemplateOverride(BaseView):
 blueprint = blueprint
 template_name = 'my-special-template.html'

 def get(self):
 return self.render()

URL and Endpoint Calculation

BaseView has calc_url and calc_endpoint class methods which will allow the developer to avoid
hard-coding those types of values throughout the code. These methods will both produce the full
URL/endpoint, including the blueprint prefix (if any).

Route Generation

BaseView will, by default, create rules for views on their respective blueprints. Generally, this
is based on the view class name as a camel-case to dash-notation conversion:

	class MyBestView in blueprint named “public”: /my-best-view -> public.my-best-view

	class View2 in blueprint named “other” with URL prefix “foo”: /foo/view2 -> other.view2

Note that BaseView is a MethodView implementation, so methods named get, post, etc. will be
respected as the appropriate targets in the request/response cycle.

A view may be given a url attribute to override the default:

class RouteOverride(BaseView):
 blueprint = blueprint
 url = '/something-other-than-the-default'

 def get(self):
 return self.render()

See keg_apps/web/views/routing.py for other routing possibilities that BaseView supports.

Class View Lifecycle

Keg views use Flask’s dispatch_request to call several methods walking a view through its
response cycle. As the methods progress, assumptions may be built for access, availability,
etc. Many of these methods will not normally be present on a view.

The view lifecycle is as follows:

	process_calling_args

	Gather arguments from the route definition and the query string

	If expected_qs_args is set on the view, look for these arguments in the query string

	URL arguments from the route definition have precedence over GET args in the query string

	Arguments are processed once, then stored on the view

	pre_auth

	Meant for actions that should take place before a user/session has been verified

	Assumptions: calling args

	check_auth

	Meant to verify the user/session has access to this resource

	Failure at this point should take appropriate action in the method itself (403, 401, etc.)

	Extensions such as keg-auth leverage this method to insert permission-based authorization into the view cycle

	Assumptions: calling args

	pre_loaders

	Authentication/authorization has passed, but we haven’t loaded any related view dependencies

	Assumptions: calling args, auth

	Loader methods

	Any method on the view ending with _loader is called with args

	Return value of the method is stored with the calling args, keyed by the method name

	e.g. a method named record_loader will set a value in calling args for record

	Methods folliwng this in the lifecycle can use the newly-set arg

	If no value is returned, Keg assumes a required dependency could not be loaded and returns a 404 response

	Order of execution of a view’s loaders may not be assumed

	Assumptions: calling args, auth

	pre_method

	Ideal method for running code shared by all response methods (e.g. get, post, etc.)

	Assumptions: calling args, auth, loader args

	Responding method

	The method used here is generally the lowercase of the request method (e.g. get, post, etc.)

	If the request method is HEAD, but there is no head method, Keg looks for get instead

	This method may return the view’s response

	Assumptions: calling args, auth, loader args

	If responding method does not return a reponse:

	I.e. the responding method returned something falsy that isn’t an empty string

	pre_render

	Assumptions: calling args, auth, loader args

	render

	Returns a response object

	By default, renders the template with args assigned on the view

	See Template Discovery above

	pre_response

	A response has been generated, but has not been sent yet

	The response is included as the _response arg for this method

	The response should not be assumed to be mutable

	If a different response should be sent, return that response from this method

	Assumptions: calling args, auth, loader args, response (from responding method or render)

Documentation

	
class keg.web.BaseView(responding_method=None)

	Base class for all Keg views to inherit from. BaseView automatically calculates and installs
routing, templating, and responding methods for HTTP verb named functions.

Example usage of `keg.web.BaseView`
import flask
from keg.web import BaseView

core_bp = flask.Blueprint('core', __name__)

class FooView(BaseView):
 url = '/foo'
 template_name = 'foo.html'
 blueprint = core_bp

 def get(self):
 context = {
 "bar": "baz",
 }

 return flask.render_template(self.calc_template_name(), **context)

	
assign(key, value)

	

	
classmethod assign_blueprint(blueprint)

	

	
auto_assign = ()

	

	
blueprint = None

	

	
calc_class_fname(use_us=False)

	

	
classmethod calc_endpoint(use_blueprint=True)

	

	
calc_responding_method()

	

	
calc_template_name(use_us=False)

	

	
classmethod calc_url(use_blueprint=True)

	

	
call_loaders(calling_args)

	

	
check_auth()

	

	
dispatch_request(**kwargs)

	The actual view function behavior. Subclasses must override
this and return a valid response. Any variables from the URL
rule are passed as keyword arguments.

	
expected_qs_args = []

	

	
classmethod init_blueprint(rules)

	

	
classmethod init_routes()

	

	
process_auto_assign()

	

	
process_calling_args(urlargs)

	

	
render()

	

	
require_authentication = False

	

	
template_name = None

	

	
url = None

	

	
keg.web.redirect(endpoint, *args, **kwargs)

	

Features

Default Logging Configuration

We highly recommend good logging practices and, as such, a Keg application does basic setup of the
Python logging system:

	Sets the log level on the root logger to INFO

	Creates two handlers and assigns them to the root logger:

	outputs to stderr

	outputs to syslog

	Provides an optional json formatter

The thinking behind that is:

	In development, a developer will see log messages on stdout and doesn’t have to monitor a file.

	Log messages will be in syslog by default and available for review there if no other action is
taken by the developer or sysadmin. This avoids the need to manage log placement, permissions,
rotation, etc.

	It’s easy to configure syslog daemons to forward log messages to different files or remote log
servers and it’s better to handle that type of need at the syslog level than in the app.

	Structured log files (json) provide metadata details in a easy-to-parse format and should be
easy to generate.

	The options and output should be easily configurable from the app to account for different needs
in development and deployed scenarios.

	Keg’s logging setup should be easy to turn off and/or completely override for situations where it
hurts more than it helps.

App Configuration

Configuration Variables

	KEG_DB_DIALECT_OPTIONS: Dict of options to provide to the db manager. E.g. “postgresql.schemas”.

	Options keys can target either the dialect or a specific bind.

	Dialect: postgresql.schemas

	Bind: bind.<bind-name>.schemas

	If the bind option is present, it will override a corresponding dialect option.

	Options supported:

	schemas: Tuple of schema names to create. Supported for postgresql and mssql dialects.

	KEG_DIR_MODE: Mode used by ensure_dirs. Default 0o777.

	KEG_ENDPOINTS: Keys/endpoints usable via keg.web.redirect.

	KEG_LOG_AUTO_CLEAR_HANDLERS: Remove existing handlers before creating new ones. Default True.

	KEG_LOG_JSON_FORMAT_STR: Format string to use for JSON log output (option for syslog)

	KEG_LOG_JSON_FORMATTER_KWARGS: Args to provide to JSON formatter

	KEG_LOG_LEVEL: Default log level, defaults to INFO and can be modified with CLI options

	KEG_LOG_MANAGED_LOGGERS: Keg creates loggers for these paths. Defaults to no paths

	KEG_LOG_STDOUT_FORMAT_STR: Format string to use for stdout log output

	KEG_LOG_STREAM_ENABLED: Directs Keg to set up a StreamHandler. Default True.

	KEG_LOG_SYSLOG_ENABLED: Directs Keg to set up a SysLogHandler. Default True.

	KEG_LOG_SYSLOG_FORMAT_STR: Format string to use for syslog log output

	KEG_LOG_SYSLOG_IDENT: Log ident for syslog. Defaults to “<app_import_name>.app”

	KEG_LOG_SYSLOG_JSON: Directs Keg to output to syslog with JSON. Default False.

	KEG_LOG_SYSLOG_JSON_PREFIX: Prefix to set in JSON output. Default “@cee:”

	KEG_REGISTERED_COMPONENTS: List of paths to import as component extensions

	KEG_SQLITE_ENABLE_FOREIGN_KEYS: Configure SQLite to enforce foreign keys by default

CLI Command

The command <myapp> develop config will give detailed information about the files and objects
being used to configure an application.

Profile Priority

All configuration classes with the name DefaultProfile will be applied to the app’s config
first.

Then, the configuration classes that match the “selected” profile will be applied on top of the
app’s existing configuration. This makes the settings from the “selected” profile override any
settings from the DefaultProfile.

Practically speaking, any configuration that applies to the entire app regardless of what context
it is being used in will generally go in myapp.config in the DefaultProfile class.

Selecting a Configuration Profile

The “selected” profile is the name of the objects that the Keg configuration handling code will
look for. It should be a string.

A Keg app considers the “selected” profile as follows:

	If config_profile was passed into myapp.init() as an argument, use it as the
selected profile. The --profile cli option uses this method to set the selected profile and
therefore has the highest priority.

	Look in the app’s environment namespace for “CONFIG_PROFILE”. If found, use it.

	If running tests, use “TestProfile”. Whether or not the app is operating in this mode is
controlled by the use of:

	myapp.init(use_test_profile=True) which is used by MyApp.testing_prep()

	looking in the app’s environment namespace for “USE_TEST_PROFILE” which is used by
keg.testing.invoke_command()

	Look in the app’s main config file (app.config) and all it’s other
config files for the variable DEFAULT_PROFILE. If found, use the value from the file with
highest priority.

Internationalization

Keg can optionally be installed with the morphi library to use babel for internationalization:

pip install keg[i18n]

The setup.cfg file is configured to handle the standard message extraction commands. For ease of development
and ensuring that all marked strings have translations, a tox environment is defined for testing i18n. This will
run commands to update and compile the catalogs, and specify any strings which need to be added.

The desired workflow here is to run tox, update strings in the PO files as necessary, run tox again
(until it passes), and then commit the changes to the catalog files.

tox -e i18n

 Python Module Index

 k

 		 	

 		
 k	

 	[image: -]
 	
 keg	

 	
 	
 keg.testing	

Index

 A
 | B
 | C
 | D
 | E
 | G
 | H
 | I
 | K
 | L
 | M
 | O
 | P
 | R
 | T
 | U
 | V

A

 	
 	app_config() (in module keg.testing)

 	app_environ_get() (in module keg.utils)

 	
 	assign() (keg.web.BaseView method)

 	assign_blueprint() (keg.web.BaseView class method)

 	auto_assign (keg.web.BaseView attribute)

B

 	
 	BaseView (class in keg.web)

 	
 	blueprint (keg.web.BaseView attribute)

C

 	
 	calc_class_fname() (keg.web.BaseView method)

 	calc_endpoint() (keg.web.BaseView class method)

 	calc_responding_method() (keg.web.BaseView method)

 	calc_template_name() (keg.web.BaseView method)

 	calc_url() (keg.web.BaseView class method)

 	call_loaders() (keg.web.BaseView method)

 	check_auth() (keg.web.BaseView method)

 	
 	classmethod() (keg.utils.HybridMethod method)

 	ClassProperty (class in keg.utils)

 	cli_loader_class (keg.app.Keg attribute)

 	CLIBase (class in keg.testing)

 	config_class (keg.app.Keg attribute)

 	ContextManager (class in keg.testing)

 	create_blueprint() (keg.component.KegComponent method)

 	create_named_blueprint() (keg.component.KegComponent method)

D

 	
 	db_visit_modules (keg.component.KegComponent attribute)

 	
 	dispatch_request() (keg.web.BaseView method)

E

 	
 	ensure_dirs() (in module keg.utils)

 	
 	expected_qs_args (keg.web.BaseView attribute)

G

 	
 	get_for() (keg.testing.ContextManager class method)

H

 	
 	HybridMethod (class in keg.utils)

I

 	
 	init_app() (keg.component.KegComponent method)

 	init_blueprint() (keg.web.BaseView class method)

 	init_blueprints() (keg.component.KegComponent method)

 	init_config() (keg.component.KegComponent method)

 	init_db() (keg.component.KegComponent method)

 	
 	init_routes() (keg.web.BaseView class method)

 	inrequest() (in module keg.testing)

 	invoke() (keg.testing.CLIBase method)

 	invoke_command() (in module keg.testing)

 	is_ready() (keg.testing.ContextManager method)

K

 	
 	Keg (class in keg.app)

 	
 	keg.testing (module)

 	KegComponent (class in keg.component)

L

 	
 	load_blueprints (keg.component.KegComponent attribute)

 	
 	logger (keg.app.Keg attribute)

M

 	
 	make_config() (keg.app.Keg method)

O

 	
 	on_config_complete() (keg.app.Keg method)

 	
 	on_init_complete() (keg.app.Keg method)

P

 	
 	process_auto_assign() (keg.web.BaseView method)

 	
 	process_calling_args() (keg.web.BaseView method)

 	pymodule_fpaths_to_objects() (in module keg.utils)

R

 	
 	redirect() (in module keg.web)

 	render() (keg.web.BaseView method)

 	
 	request_context() (keg.app.Keg method)

 	require_authentication (keg.web.BaseView attribute)

 	route() (keg.app.Keg method)

T

 	
 	template_folder (keg.component.KegComponent attribute)

 	
 	template_name (keg.web.BaseView attribute)

 	testing_prep() (keg.app.Keg class method)

U

 	
 	url (keg.web.BaseView attribute)

V

 	
 	visit_modules() (in module keg.utils)

Components

Keg components follow the paradigm of flask extensions, and provide some defaults for the
purpose of setting up model/view structure. Using components, a project may be broken down into
logical blocks, each having their own entities, blueprints, templates, tests, etc.

	Components need to be registered in config at KEG_REGISTERED_COMPONENTS

	The path given here should be a full dotted path to the top level of the component

	e.g. my_app.components.blog

	At the top level of the component, __component__ must be defined as an instance of KegComponent

	Depending on the needs of the component, model and view discovery may be driven by the subclasses
of KegComponent that have path defaults

	Examples:

	__component__ = KegModelComponent('blog')

	__component__ = KegViewComponent('blog')

	__component__ = KegModelViewComponent('blog')

	Component discovery

	A component will attempt to load model and blueprints on app init

	The default paths relative to the component may be modified or extended on the component’s definition

	Default model path in “model” components: .model.entities

	Override via the component’s db_visit_modules list of relative import paths

	Default blueprint path for “view” components: .views.component_bp

	Use the create_named_blueprint or create_blueprint helpers on the component’s __component__
to create blueprints with configured template folders

	Override via the component’s load_blueprints list

	List elements are a tuple of the relative import path and the name of the blueprint attribute

	Components have their own template stores, in a templates folder

	Override the component’s template path via the template_folder attribute

	Paths may also be supplied to the constructor

	e.g. __component__ = KegComponent('blog', db_visit_modules=('.somewhere.else',))

Keg’s Goal

The goal for this project is to encapsulate Flask best practices and libraries so devs can avoid
boilerplate and work on the important stuff.

We will lean towards being opinionated on the big things (like SQLAlchemy as our ORM) while
supporting hooks and customizations as much as possible.

Think North of Flask but South of Django.

Installation

pip install keg

Upgrade Notes

While we attempt to preserve backward compatibility, some Keg versions do introduce
breaking changes. This list should provide information on needed app changes.

	0.11.0

	App context is no longer pushed as part of test suite setup

	Having the app context pushed there was problematic because extensions can rely on
flask.g refreshing for each request

	Generally, when processing requests, flask will push a fresh app context. However, this
does not occur if a context is already present.

	While that concern is resolved most directly in flask-webtest 0.1.1 by directly pushing
an app context as part of the request process, keg needs to stop tying the test framework
and the context so closely together. An app’s test suite needs to be able to set up and
tear down contexts as needed.

	pytest does not yet support passing fixtures to setup methods. Thus, for the time being,
to have database use available in setup methods (since flask-sqlalchemy ties that session
to an app context), auto-used fixtures will be needed. Ensure the scope of the auto-used
fixture matches the level of setup methods needed in the suite (module, class, etc.)

	Mocking can be affected in the test suite as well. Any mocks requiring app context will
need to happen at run time, rather than import time

	E.g. @mock.patch.dict(flask.current_app.config, ...) becomes
@mock.patch.dict('flask.current_app.config', ...)

	0.10.0

	rule: default class view route no longer generated when any rules are present

	Absolute route had been provided automatically from the class name, but in some situations
this would not be desired. Views that still need that route can use a couple of solutions:

	Provide an absolute route rule: rule('/my-route')

	Use an empty relative route rule: rule()

	All of an app’s routes may be shown on CLI with the <app> develop routes command

	Removed keg blueprint along with ping and exception-test routes

	DB manager prep_empty method no longer called (had been deprecated)

	Python 2 support removed

	Flask changed app’s json_encoder/json_decoder attributes to _json_encoder/_json_decoder

Views

While generic Flask views will certainly work in this framework, Keg provides a BaseView that
applies a certain amount of magic around route and blueprint setup. BaseView is based on Flask’s
MethodView. Best practice is to set up a blueprint and attach the views to it via the blueprint
attribute. Be aware, BaseView will set up some route, endpoint, and template location defaults,
but these can be configured if needed.

Blueprint Setup

Adding views to a blueprint is accomplished via the blueprint attribute on the view. Note,
BaseView magic kicks in when the class is created, so assigning the blueprint later on will not
currently have the desired effect:

import flask
from keg.web import BaseView

blueprint = flask.Blueprint('routing', __name__)

class VerbRouting(BaseView):
 blueprint = blueprint

 def get(self):
 return 'method get'

Once the blueprint is created, you must attach it to the app via the use_blueprints app attribute:

from keg.app import Keg
from my_app.views import blueprint

class MyApp(Keg):
 import_name = 'myapp'
 use_blueprints = (blueprint,)

Blueprints take some parameters for URL prefix and template path. BaseView will respect these when
generating URLs and finding templates:

blueprint = flask.Blueprint(
 'custom',
 __name__,
 template_folder='../templates/specific-path',
 url_prefix='/tanagra')

class BlueprintTest(BaseView):
 # template "blueprint_test.html" will be expected in specific-path
 # endpoint is custom.blueprint-test
 # URL is /tanagra/blueprint-test
 blueprint = blueprint

 def get(self):
 return self.render()

Template Discovery

To avoid requiring the developer to configure all the things, BaseView will attempt to discover the
correct template for a view, based on the view class name. Generally, this is a camel-case to
underscore-notation conversion. Blueprint name is included in the path, unless the blueprint has
its own template_path defined.

	class MyBestView in blueprint named “public” -> <app>/templates/public/my_best_view.html

	class View2 in blueprint named “other” with template path “foo” -> <app>/foo/view2.html

A view may be given a template_name attribute to override the default filename, although the same
path is used for discovery:

class TemplateOverride(BaseView):
 blueprint = blueprint
 template_name = 'my-special-template.html'

 def get(self):
 return self.render()

URL and Endpoint Calculation

BaseView has calc_url and calc_endpoint class methods which will allow the developer to avoid
hard-coding those types of values throughout the code. These methods will both produce the full
URL/endpoint, including the blueprint prefix (if any).

Route Generation

BaseView will, by default, create rules for views on their respective blueprints. Generally, this
is based on the view class name as a camel-case to dash-notation conversion:

	class MyBestView in blueprint named “public”: /my-best-view -> public.my-best-view

	class View2 in blueprint named “other” with URL prefix “foo”: /foo/view2 -> other.view2

Note that BaseView is a MethodView implementation, so methods named get, post, etc. will be
respected as the appropriate targets in the request/response cycle.

A view may be given a url attribute to override the default:

class RouteOverride(BaseView):
 blueprint = blueprint
 url = '/something-other-than-the-default'

 def get(self):
 return self.render()

See keg_apps/web/views/routing.py for other routing possibilities that BaseView supports.

Class View Lifecycle

Keg views use Flask’s dispatch_request to call several methods walking a view through its
response cycle. As the methods progress, assumptions may be built for access, availability,
etc. Many of these methods will not normally be present on a view.

The view lifecycle is as follows:

	process_calling_args

	Gather arguments from the route definition and the query string

	If expected_qs_args is set on the view, look for these arguments in the query string

	URL arguments from the route definition have precedence over GET args in the query string

	Arguments are processed once, then stored on the view

	pre_auth

	Meant for actions that should take place before a user/session has been verified

	Assumptions: calling args

	check_auth

	Meant to verify the user/session has access to this resource

	Failure at this point should take appropriate action in the method itself (403, 401, etc.)

	Extensions such as keg-auth leverage this method to insert permission-based authorization into the view cycle

	Assumptions: calling args

	pre_loaders

	Authentication/authorization has passed, but we haven’t loaded any related view dependencies

	Assumptions: calling args, auth

	Loader methods

	Any method on the view ending with _loader is called with args

	Return value of the method is stored with the calling args, keyed by the method name

	e.g. a method named record_loader will set a value in calling args for record

	Methods folliwng this in the lifecycle can use the newly-set arg

	If no value is returned, Keg assumes a required dependency could not be loaded and returns a 404 response

	Order of execution of a view’s loaders may not be assumed

	Assumptions: calling args, auth

	pre_method

	Ideal method for running code shared by all response methods (e.g. get, post, etc.)

	Assumptions: calling args, auth, loader args

	Responding method

	The method used here is generally the lowercase of the request method (e.g. get, post, etc.)

	If the request method is HEAD, but there is no head method, Keg looks for get instead

	This method may return the view’s response

	Assumptions: calling args, auth, loader args

	If responding method does not return a reponse:

	I.e. the responding method returned something falsy that isn’t an empty string

	pre_render

	Assumptions: calling args, auth, loader args

	render

	Returns a response object

	By default, renders the template with args assigned on the view

	See Template Discovery above

	pre_response

	A response has been generated, but has not been sent yet

	The response is included as the _response arg for this method

	The response should not be assumed to be mutable

	If a different response should be sent, return that response from this method

	Assumptions: calling args, auth, loader args, response (from responding method or render)

 _static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/plus.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 Keg: more than Flask

 		
 App

 		
 Components

 		
 Documentation

 		
 Utils

 		
 Signals

 		
 Keg Events

 		
 Testing Utils

 		
 Keg Web

 		
 Views

 		
 Blueprint Setup

 		
 Template Discovery

 		
 URL and Endpoint Calculation

 		
 Route Generation

 		
 Class View Lifecycle

 		
 Documentation

 		
 Features

 		
 Default Logging Configuration

 		
 App Configuration

 		
 Configuration Variables

 		
 CLI Command

 		
 Profile Priority

 		
 Selecting a Configuration Profile

 		
 Internationalization

_static/up-pressed.png

_static/up.png

